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ABSTRACT

Many studies have been carried out using different metaheuristic algorithms on optimisation problems 
in various fields like engineering design, economics and routes planning.  In the real world, resources 
and time are scarce. Thus the goals of optimisation algorithms are to optimise these available resources. 
Different metaheuristic algorithms are available. The firefly algorithm is one of the recent metaheuristic 
algorithms that is used in many applications; it is also modified and hybridised to improve its performance. 
In this paper, we compare the Standard Firefly Algorithm, the Elitist Firefly Algorithm, also called 
the Modified Firefly Algorithm with the Chaotic Firefly Algorithm, which embeds chaos maps in the 
Standard Firefly Algorithm. The Modified Firefly Algorithm differs from the Standard Firefly Algorithm 
in such a way that the global optimum solution at a particular iteration will not move randomly but in a 
direction that is chosen from randomly generated directions that can improve its performance. If none 
of these directions improves its performance, then the algorithm will not be updated. On the other hand, 
the Chaotic Firefly Algorithm tunes the parameters of the algorithms for the purpose of increasing the 
global search mobility i.e. to improve the attractiveness of fireflies. In our study, we found that the Chaotic 
Firefly Algorithms using three different chaotic maps do not perform as well as the Modified Firefly 
Algorithms; however, at least one or two of the Chaotic Firefly Algorithms outperform the Standard 
Firefly Algorithm under the given accuracy and efficiency tests.
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INTRODUCTION

Generally, optimisation refers to maximisation 
or minimization of an objective function by 
finding suitable values for the variables 
from a set of feasible values. Optimisation 
solution methods can be categorised into two 
categories: deterministic algorithms and non-
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deterministic algorithms. Heuristic or metaheuristic algorithms fall under non-deterministic 
algorithms. The word ‘heuristic’ comes from a Greek word ‘to find’ or ‘to discover’ while 
metaheuristic combines the words ‘meta’ and ‘heuristic’ where ‘meta’ means a higher level. 
However, no difference is recorded between metaheuristic and heuristic; researchers seem to 
use both names interchangeably. Heuristic algorithms are usually experience-based. Simply 
put, they are a ‘common-sense’ approach to problem solving (Luke, 2013). They are used to 
speed up the process of finding a good enough solution based on an educated guess, an intuitive 
judgment or expertise (Suh et al., 2011). Metaheuristic algorithms are iterative procedures 
that combine the concepts of exploration and exploitation within feasible regions (Osman & 
Laporte, 1996). Learning strategies are used to organise information in order to generate near-
optimal solutions. Based on previous knowledge and most of the simulated real-life experiments 
done in this area, heuristic algorithms try to get solutions which are effective to dismantle the 
problems. They can be applied to many problems as they do not rely on rigorous mathematical 
characteristics of the problems and may be generally used on global optimisation problems(Fink 
& Voβ, 1998; Fu et al., 2005; Tilahun & Ong, 2012a; Kopecek, 2014; Maknoon et al., 2014; 
Cui, 2014).However,they do not guarantee the generation of an exact optimal solution within 
acceptable timescales (Hopper & Turton, 2000). On the contrary, metaheuristics are likely to 
generate near-optimal solutions within acceptable timescales. Nowadays, many studies are 
found to group all stochastic algorithms within random variables and global exploration into 
metaheuristic algorithms. 

Two major search components of metaheuristics are exploration and exploitation. 
Exploration means looking for diverse solutions by going around entire new regions in a 
particular search space while exploitation means getting the current best solution by focusing 
on those found regions. In a case where there is too little exploration and too much exploitation, 
the algorithm may get trapped within local optima resulting in difficulty in finding the global 
optimum. Therefore, we need to achieve a balance between these components to improve 
the convergence of the algorithm (Creppinsek et al., 2000; Yang, 2011). Most metaheuristic 
algorithms are nature-inspired and they mimic biological, physical or natural phenomena from 
the real world. Some popular nature-inspired algorithms are the Particle Swarm Optimisation 
(PSO) algorithm, the Prey-Predator Algorithm (PPA), the Cuckoo Search (CS) algorithm, the 
Bat Algorithm (BA) and the Firefly Algorithm (FFA). They have different strengths and better 
performances for a certain class of optimisation problems. It is quite challenging to select the 
suitable or best algorithm for a specific problem, and this by itself is another optimisation 
problem. 

Nowadays, there are trends to introduce new algorithms, extend and modify the existing 
algorithms, compare the performance of different algorithms, apply the algorithms in multiple 
disciplines for optimisation purpose and combine any two algorithms in hybridisation (Fisher 
et al., 2013). Even though the Firefly Algorithm is one of the recently introduced metaheuristic 
algorithms (Yang, 2009), it has been used extensively for many applications and has been 
modified and hybridised for different classes of optimisation problems (Apostolopoulos & 
Vlachos, 2011; Basu & Mahanti, 2011; Gandomi et. al, 2013; Tilahun & Ong, 2013). In this 
study, we compared the performances of the Standard (FFA) algorithm, the Modified Firefly 
Algorithm (MFFA) and the Chaotic Firefly Algorithms (CFFAs) based on eight chosen test 
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functions in terms of their accuracy and effectiveness. Three chaotic maps, namely, the Iterative 
map, the Chebyshev map and the Sinusodial map for the Chaotic Firefly Algorithms, were 
chosen based on their statistical results and success rate, which can improve the reliability 
of the global optimality and enhance the quality of the results (Gandomi et al., 2013).In the 
chaotic map, we varied the parameters, β (the attractiveness coefficient) and γ (light absorption 
coefficient). If γ is too small and tends to zero, attractiveness becomes constant; and if γ is 
too large, attractiveness will decrease dramatically, as will be discussed later. Therefore we 
needed to tune the γ parameter used for all the Firefly Algorithms tested within these two 
extreme γ values.

BASIC CONCEPTS

Optimisation Problem

Optimisation is a mathematical method to find a maximum or minimum value of an objective 
function f(x) by choosing a variable from a feasible region, Ω. x* is said to be a solution for a 
minimisation problem if and only if x* ∈Ω and f(x*) ≤ f(x), ∀∈Ω . We can express the typical 
minimisation problem in equation (1) and its equivalent maximisation problem in equation (2). 

Hence f(x* ) ≤ f(x) for all x∈ Ω

Hence f(x* ) ≥ f(x) for all x∈ Ω

Optimisation algorithms are useful tools for different applications including experimental 
design, parameter estimation, model development and statistical analysis; process synthesis, 
analysis, design and retrofit; model predictive control and real-time optimisation. They are 
also useful in the planning, scheduling and integration of process operations into the supply 
chain for manufacturing and distribution (Biegler, 2010).

Standard and Modified Firefly Algorithm (FFA, MFFA)

The Modified Firefly Algorithm is an extension or improvement of the Firefly Algorithm (FFA), 
which is a nature-inspired algorithm that imitates the behaviour of fireflies of flashing light 
within their bodies to attract mating partners and potential predators (Yang, 2010). 

 min
x∈ℝ𝑛𝑛

𝑓𝑓(𝑥𝑥) 

s.t.   𝑥𝑥∈Ω ⊆ℝ𝑑𝑑  
(1) 

 max
x∈ℝ𝑛𝑛

−𝑓𝑓(𝑥𝑥) 

s.t.   𝑥𝑥∈Ω ⊆ℝ𝑑𝑑  
(2) 
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There are three assumptions made in adapting this behaviour of fireflies for use in an 
algorithm:

i. All fireflies are unisex; therefore, a firefly may be attracted to any other firefly;

ii. The attractiveness of fireflies is proportional to their brightness, and for two fireflies, xi and 
xj, if the brightness of xj ≥ the brightness of xi, then xi will move towards xj. At the same 
time, attractiveness decreases as distance increases.

iii. The brightness of a firefly is affected or determined by the landscape of the objective 
function to be optimised

There are two important components affecting the movements of fireflies: the variation of 
light intensity and the formulation of the attractiveness. As mentioned above, light intensity I 
decreases as the distance r increases. We can express I(r) as given below:

By combining this with the inverse square law, I (r) can be expressed as:

As the attractiveness is proportional to the light intensity, we now define the attractiveness 
β as: 

where β0 is the attractiveness at r=0. Computationally, it is harder to calculate the 
exponential function than 1/(1+r2) , hence we approximate the equation of computing the 
attractiveness β as:

Suppose we have a firefly i located at xi as the brighter firefly while another less bright 
firefly j is at xj; the firefly j will move towards the firefly i. The location is then updated using 
the process given below:

where rand is a vector of random numbers 0≤α≤1 and  0.01≤γ≤100 (Yang, 2009).

The distance between two fireflies, namely, firefly i and firefly j, rij, can be computed using 
Euclidean distance as:

 
𝐼𝐼(𝑟𝑟) = 𝐼𝐼0 𝑒𝑒−𝛾𝛾𝑟𝑟  (3) 

 𝐼𝐼(𝑟𝑟) = 𝐼𝐼0 𝑒𝑒−𝛾𝛾𝑟𝑟
2  (4) 

 𝛽𝛽 = 𝛽𝛽0 𝑒𝑒−𝛾𝛾𝑟𝑟
2  (5) 

 
𝛽𝛽 =

𝛽𝛽0 

1 + 𝛾𝛾𝑟𝑟2  (6) 

 𝑟𝑟𝑖𝑖𝑖𝑖 = ‖𝑥𝑥𝑖𝑖 � − �𝑥𝑥𝑖𝑖 � 

 

 (8) 
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While the same in all the issues discussed above, the Standard and Modified Firefly 
Algorithms mainly differ in the updating process of the brightest firefly; instead of letting this 
brightest firefly, xB, which serves as the current global best solution to move randomly, we set 
the movement direction for it. The purpose for doing so is that we know that if this brightest 
firefly moves randomly, it may move to a region where its brightness may decrease i.e. the 
performance of the global best solution for the algorithm may decrease. In order to do so, we 
generate m unit vectors, u1, u2,…,um, and choose one in which the brightness of the current 
global best solution will increase if it moves in the particular direction, say U (Tilahun & Ong, 
2012b). The movement direction of the brightest firefly can be expressed as below:

where α is the random step length and U  is the unit vector chosen from the m directions. If 
there is no direction from the m unit vectors for the current brightest solution to move in order 
to increase its performance, the current brightest solution will remain at its existing position. 
Furthermore, unlike the Standard Firefly Algorithm, in the Modified Firefly Algorithm,  β0, 
which is the attractiveness at r=0, for a firefly this is not taken as 1 but can be expressed as: 

where I0
i is the intensity at r=0 for firefly i while I0

j is the intensity at r=0 for firefly j and  
I0

j ≠ 0. The modified firefly algorithm procedure is shown in Fig.1.

Chaotic Firefly Algorithm (CFFA)

Chaos is a type of unique deterministic nonlinear dynamic behaviour and it has been applied 
widely in communication, automation, pattern recognition and other fields. A dynamic system 
may be mathematically expressed either by a continuous set of equations or by a discrete 
system, called a map, as follows:

running in chaotic state. The chaotic sequence    

     { xk:k=0,1,2…}

can be used as a spread-spectrum sequence and as a random number sequence. These sequences 
have already been proven for their easy and fast generation and storage (Heidari-Bateni & 
McGillem, 1992; Nguyen et al., 2013).  

The main idea of using chaotic maps or systems in a Firefly Algorithm is to replace the 
random variables used in the firefly algorithm with chaotic variables so as to increase its mobility 
for robust global optimisation. To fulfil this purpose, we tune the parameters β and γ for the 
attractive movement in chaotic firefly. Tuning the parameters β and γ will affect the results of 
the convergence rate and the number of algorithm iterations (Arora & Singh, 2013; Yang, 2011).

 
𝛽𝛽𝑜𝑜 =  

𝐼𝐼0𝑖𝑖

𝐼𝐼0 𝑖𝑖
 

 (10) 

 𝑥𝑥𝑘𝑘+1 =  𝑓𝑓(𝑥𝑥𝑘𝑘) , 0 < 𝑥𝑥𝑘𝑘 < 1, 𝑘𝑘 = 0, 1, 2 …  (11) 
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Fig.1: The Modified Firefly Algorithm Procedure
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Although firefly algorithms are efficient enough in optimisation problems, in this study we 
noticed that the solutions kept on changing as they approached the optimum. Gandomi et al. 
(2013)suggested to tune the light absorption coefficient, γ, and the attractiveness coefficient, β, 
using chaotic maps so as to increase the mobility of the solution in the algorithms. The chaotic 
Firefly Algorithm procedure is shown in Fig.2. 

Fig.2: The Chaotic Firefly Algorithm Procedure
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Chaotic solutions are affected by three properties: sensitivity of parameters, sensitivity 
of initial points and randomness (Sharkovsky et al., 1997). For the sensitivity of parameters, 
slight changes in the parameters or initial values for the data will lead to vastly different future 
behaviour. On sensitivity of initial points, we can see that if an initial point x0 varies slightly, 
two sequences found from repeated calculations on a chaotic map with a parameter finally 
become quite different. For randomness, solutions starting from almost all x0 in [0, 1] wander 
in [0, 1] as the random number is taken from a uniform distribution.

The characteristic of non-repetition of chaos enables the algorithm to carry out overall 
searches at a higher speed than stochastic ergodic searches, which depend on probabilities. 
A random local search may cause the algorithm to be easily trapped in the local minima but 
Chaotic maps are useful in helping the algorithm to escape this condition.

One-dimensional maps are the simplest systems with the capability of computing a chaotic 
process (Ram, 2009).In this study, we choose three chaotic maps that have good performance in 
terms of success rate and statistical analysis which was studied by Gandomi et al. (2013).The 
maps chosen are the Iterative map, the Chebyshev map and the Sinusodial map. Gandomi et 
al. (2013) suggested to normalise the chaotic maps between 0 and 2 to produce the simulation 
results. We embedded these maps into the firefly algorithms for it to become Chaotic Firefly 
Algorithms (CFFA).

The three chosen chaotic maps were one-dimensional and non-invertible maps. The first 
map was an Iterative map. It is a mapping function that maps a region back onto itself and is 
defined as below:

where a∈(0, 1) is the suggested range for the parameter. In this study, we used a=0.5 for all 
the firefly algorithms being tested.

Secondly we had a Chebyshev map, which is a typical chaotic map called an identity 
map, defined as:

The third chaotic map we tested was a Sinusodial map. It is defined as below:

Gandomi et al. (2013) suggested to use a=2.3 and x0=0.7, which gave us a simplification 
of the equation as:

 𝑥𝑥𝑘𝑘+1 =  𝑎𝑎𝑥𝑥𝑘𝑘2 sin (𝜋𝜋𝑥𝑥𝑘𝑘)    
 

(14) 
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In Gandomi et al. (2013), the success rate for evaluating the performance of the algorithms 
can be calculated using this equation:

where Nall is the number of all trials, Nsuccessful is the number of trials in which is found a 
successful solution. Here, a run in which the results are close to the global optimum would be 
considered a successful run. A successful run can be expressed as:

where xgb is the global best obtained by the proposed algorithms and UB is the upper bound 
while LB is the lower bound of the variable tested. 

TEST FUNCTIONS

Standard benchmarks or test functions are useful and important in evaluating the reliability, 
efficiency and validation of optimisation algorithms. The test functions can be categorised 
according to their types of continuity, modality and dimensionality. On the continuity of test 
functions, we used both continuous and discontinuous functions. A function f(x) is said to be 
continuous at a point c if the limit of the function as x approaches c is the same as the functional 
value of the function at x=c. If this property is not fulfilled at any point x=c, the function f(x) 
is said to be discontinuous at c. For the modalities of test functions, we used both unimodal 
and multimodal functions.  

A unimodal function has only one optimum while a multimodal function may have many 
local optima and global optima. Multimodal functions are useful in testing the ability of 
optimisation algorithms to escape from a local minimum. In this study, we chose eight test 
functions under different categories of continuity, modality and dimensionality. One of the 
selected test functions was a four-dimensional objective function while the rest of the functions 
chosen were two-dimensional. 

Beale Function

The Beale Function is a continuous and unimodal function with sharp peaks at the corners of 
the input domain. It is a two-dimensional function.The function is defined as:

f1(x)=(1.5 - x1+ x1 x2 )2+(2.25 - x1+x1 x2
2 )2+(2.625-x1+x1 x2

3)2 )

The variables x1 and x2 are both defined on the interval [-4.5, 4.5]. It is unimodal and 
contains only one optimum i.e. a global minimum at (x1,x2)=(3, 0.5) giving the value of f1 (x)=0 
(Momin & Yang, 2013). Figure 3 shows the graph of f1(x).

 
𝑆𝑆𝑟𝑟 = 100 ×  

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑓𝑓 𝑠𝑠𝑢𝑢
𝑁𝑁𝑎𝑎𝑢𝑢𝑢𝑢

 (16) 

 ‖𝑥𝑥𝑔𝑔𝑔𝑔 � − �𝑥𝑥∗‖ ≤ ( 𝑈𝑈𝑈𝑈 − 𝐿𝐿𝑈𝑈) × 10−4 (17) 



Hong Choon Ong, Surafel Luleseged Tilahun and Suey Shya Tang

260 Pertanika J. Sci. & Technol. 23 (2): 251 - 269 (2015)

Leon Function

The Leon Function is a continuous and unimodal function. It is a two-dimensional function.
The function is defined as:

f2 (x)=100(x2-x1
2 )2+(1-x1 )2

The variables x1 and x2 are both defined on the interval [-1.2, 1.2]. The global minimum of 
the Leon Function at (x1,x2)= (1, 1) gives the value of f2 (x) = 0 (Momin & Yang, 2013). Figure 
4 shows the graph of f2 (x) plotted for two-dimensional graph.

Matyas Function

The Matyas Function is a continuous and unimodal function. It is a two-dimensional function.
The function is defined as:                       

f3 (x)=0.26(x1
2+x2

2)+0.48x1 x2

The variables x1 and x2 are both defined on the interval [-10, 10]. The global minimum 
of the Matyas function at (x1,x2)= (0, 0) gives the value of f3 (x) = 0 (Momin & Yang, 2013). 
Figure 5 shows the graph of f3 (x) plotted for a two-dimensional graph.
Goldstein Price Function

Goldstein Price Function is a continuous and multimodal function. It is a two-dimensional 
function.The function is defined as:

f4 (x)=[1+(x1+x2 +1)2 (19-14x1+3x1
2-14x2+6x1 x2+3x2

2 )]× 
          [30+(2x1-3x2 )2 (18-32x1+12x1

2+48x2-36x1 x2+27x2
2 )]

The variables x1 and x2 are both defined on the interval [-2, 2]. The global minimum of the 
Goldstein Price function at (x1,x2)= (0, -1) gives the value of f4 (x) = 3 (Schonlau, 1997). Not 
far from the global minimum, there are another three local minima. Therefore, it is said to be 
a difficult problem for minimisation methods due to its having more than one local minimum. 
Figure 6 shows the graph of f4(x).

Hosaki Function

The Hosaki Function is a continuous and multimodal (bimodal) function. It is a two-
dimensional function.The function is defined as below: 

The variable x1 is defined on the interval [0, 5] while x2 is defined on the interval [0, 6]. 
The global minimum of the Hosaki function at (x1,x2)=  (4, 2) and the local minimum of the 
Hosaki function at (x1,x2)=  (1, 2) give the value of  f5 (x) = -2.3458 (Duan et al., 1992). Figure 
(7) shows the graph of f5 (x).
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Price 1 Function

The Price 1 Function is a continuous and multimodal function. It is a two-dimensional function.
The function is defined as:

f6 (x)=(|x1 |-5)2+(|x2 |-5)2

The variables x1 and x2 are both defined on the interval [-500, 500]. There are four global 
minima of the Price 1 Function at (x1,x2)= {(-5, -5), (-5, 5), (5, -5), (5, 5)} which give the value 
of f6 (x) = 0 (Price, 1976). Figure 8 shows the graph of f6 (x).

Bird Function

The Bird Function is a continuous and multimodal function. It is a two-dimensional function.
The function is defined as:

The variables x1 and x2 are both defined on the interval [-2π, 2π]. The global minimum of 
the Bird Function at (x1,x2)= (4.70104, 3.15294) and (-1.58214, -3.13024) gives the value of 
f7 (x) = -106.764537 (Momin & Yang, 2013). Figure 9 shows the graph of f7 (x) plotted for a 
two-dimensional graph.

Cosine Mixture Function

The Cosine Mixture Function is a discontinuous and multimodal function. This function can 
be either in two or four dimensions.The function is defined as:

The variable x1 is defined on the interval [-1, 1]. In this study, we fixed the number of 
dimensions  to four. The minimum of the Cosine Mixture function is found at x1 = 0 to give 
the values of f8 (x) = -0.2 and f8 (x) = - 0.4 for the two-dimensional and four-dimensional cases 
respectively. (Momin & Yang, 2013). Figure 10 shows the graph of f8 (x) plotted for the two-
dimensional graph.
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SIMULATION RESULTS

We carried out tests for the eight functions for the algorithms under two termination criteria, 
which are the maximum number of iterations and pre-given tolerance. The maximum number 
of iterations was set as 200 iterations and was tested at 100 trials, with the same random initial 
solution passing to the entire algorithm in each trial. We recorded the mean functional values 
and their standard deviations as well to examine the accuracy of the tested functions on different 
algorithms. At the same time, we compared the mean CPU time needed per trial on the FFA, 
MFFA and CFFA. Using the second termination criterion, we set a tolerance which was close to 
the global minimum value. We got the mean number of iterations needed for convergence when 
the termination criterion was met and the mean CPU time needed per trial for the algorithms 
respectively. For both tests, we set the number of solutions at 50, 100 and 150 to see whether 
the number of solutions affected the simulation results. The simulation results for the first test 
are shown in Table 1 while the simulation results for the second test are shown in Table 2.

Under the maximum number of iterations as termination criteria, the number of iterations 
for the inner loop was set at 200 and these were tested 100 times repeatedly in the while loop 
until the best solution (optimal value) was obtained. The results in Table 1 show the sample 
mean, sample standard deviation and sample mean CPU time for eight test problems (i) under 
five algorithms (j) in three sets of numbers of fireflies (k). Under these criteria, the accuracy 
of the algorithms can be compared.

In the first test, for the mean functional values, MFFA, outperformed the other algorithms 
for all eight test functions i.e. the functional values were the closest to the global minimum 
values. For instance, when n=50, MFFA outperformed the other algorithms (shown in bold 
and italics) since its sample mean optimal value was the nearest to the established optimum 
in all the eight test functions carried out where μ121=0.0032, μ ̂221=0.0000, μ 321=0.0001, μ 
421=3.0262, μ521=-2.3455μσ621=0.0014, μ 721=-106.7020 and μ 821=-0.3346. We noticed that 
the MFFA achieved the highest accuracy. Besides that, we also observed that at least one of 
the CFFA (when we see the three chaotic mappings as a group) performed better than the 
FFA. For instance, when n =100, 7 out of 8 test problems in the CFFAs performed better 
than FFA (shown in bold and italics) where μ132=0.0131 and μ 152=0.0129 compared to μ 
122=0.0152;μ332=0.0007and μ342=0.0006 compared to μ312=0.0008; μ_432=3.1805 compared 
to μ412=3.3074; μ532=-2.3447 and μ 542=-2.3443 compared to μ 512=-2.3439; μ632=0.2840 and 
μ642=0.2927compared to μ 612=0.3164; μ 732=-106.5059, μ ̂742=-106.5120 and μ752=-106.5546 
compared to μ712=-106.4639; μ 832=-0.2689 compared to μ 812=-0.2622.

Besides comparing the sample mean optimal value, we can also compared the sample 
standard deviation for the sample mean value obtained from the 8 test functions. Overall, the 
sample standard deviation for the MFFA was the smallest among all the five algorithms tested 
regardless of the number of fireflies set. It indicated that the results from the MFFA were more 
constant and stable. On the other hand, the performances of the sample standard deviations 
and CPU times of the FFA and the CFFA depended on the performance of their sample means 
respectively. For instance (as underlined), σμ121 = 0.0040, σμ 221 = 0.0000, σμ321 = 0.0001, 
σμ 421= 0.0227, σμ521= 0.0002, σμ621 = 0.0014, σμ ̂721 = 0.0898 and σμ821 = 0.0163 for n=50; 
σμ122)=0.0025, σμ 222= 0.0000, σμ322 = 0.0001, σμ 422 = 0.0233, σμ522 = 0.0003, σμ 622 =0.0015, 
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σμ722)=0.0813 and σ_(μ822) = 0.0169 for n=100; and σμ123 =0.0021, σμ223=0.0000, σμ323=0.0001, 
σμ423 =0.0179, σμ523 =0.0002, σμ623)=0.0013, σμ723 =0.0648 and σμ823 =0.0185 for n=150. A low 
standard deviation obtained in MFFA indicated that the optimal sample mean of the optimal 
solutions obtained for each trial was distributed very close to the optimal sample mean of the 
optimal solutions i.e. the variation between the means was rather small.

Under the tolerance value accepted according to the established optimum of the eight test 
problems as termination criteria, the number of iterations for the inner loop was set at 10000 
number of times and these iterations were tested 100 times repeatedly until a termination 
criterion, which achieved a very close solution to the actual optimal solution based on the 
tolerance given, was obtained.The results in Table 2 show the number of iterations needed 
for the convergence in each trial with its sample standard deviation and the mean CPU time 
needed for each trial and its sample standard deviation. Under these criteria, the effectiveness 
of the algorithms can be compared.

In the second test, for the mean number of iterations, the MFFA also outperformed the 
other algorithms for all the eight test functions i.e. it converged faster than others and had 
the least number of iterations. For instance, under f6(shown in bold and italics), when n=50, 
Itr621=38.3900 compared to Itr611=51.9800, Itr631=60.7300, Itr641=55.2500 and Itr651=54.2300. As 
was the situation for the first test, there was at least one  CFFA (when we saw the three chaotic 
mappings as a group) converged faster than the FFA. For instance, when n=150, 7 out of 8 
test problems in the CFFAs performed better than the FFA (shown in bold and italics) where 
Itr143=23.6200 and Itr153=23.3800 compared to Itr113=26.1400;Itr233=8.7200 and Itr243=7.4800 
compared to Itr213=9.1700; Itr333=18.1800 and Itr353=21.8400 compared to Itr313=22.7100; 
Itr433=18.6000, Itr443=24.5200 and Itr453=34.2300 compared to Itr413=34.4900;Itr543=17.2800 
compared to Itr513=17.6300; Itr743=12.3800compared to Itr713=12.8100; Itr833=46.2300, 
Itr843=48.9900 and Itr853=38.4100 compared to Itr813=52.4400.

Furthermore, the MFFA needed the least CPU time to converge, followed by both the 
CFFA and the FFA simultaneously. The sample standard deviations of the number of iterations 
and the CPU times for convergence depended on the performance of the number of iterations 
spontaneously. We noticed that the sample standard deviation for MFFA was the least and its 
CPU time was the least as well since the MFFA had the smallest number of iterations needed 
to reach the convergence criteria. For instance, under f7 (as underlined), Itr722=12.0300 at 
σItr722=10.9622 with CPU722=0.2316 (MFFA) when n = 100 has the least number of iterations, 
standard deviation and CPU time if compared to the results obtained in the FFA and the CFFAs.

Most of the time, when the number of fireflies increased, the optimal values got closer to 
the established optimum. For instance,μ211=0.0007 for n = 50 had improved to μ212=0.0005 for 
n = 100 and then further improved toμ213=0.0004 for n = 150. We could see the sample mean 
was approaching the established optimum when the number of fireflies increased from 50 to 
100 and then to 150. This indicated that the number of fireflies had a positive relationship 
with the optimal sample mean value. Therefore, if we wished to get the best optimal value, 
what we needed to do was to increase the sample size. We also noticed that the mean number 
of iterations was actually affected by the tolerance value set for the functions; the smaller 
the difference between the global minimum value and the tolerance, the fewer the number 
of iterations were needed for convergence. For instance, f6 was set at the tolerance of 0.1, f1 
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was set at the tolerance of 0.01, f3 was set at the tolerance of 0.001 where the tolerance in f3 
had the smallest different with a global minimum (f3min=0). When n=100, we observed that 
(underlined) the number of iterations decreased from Itr612=35.5000 to Itr112=34.3700 and then 
Itr312=23.1800 under the FFA.

Theoretically, exploration is done using a big-step length which can take the solution away 
from its current neighbourhood. Both of the three versions of Firefly Algorithms have the same 
exploration property. However, due to the chaos representation of the algorithm parameters in 
the CFFA, Gandomy et. al. (2013)claimed that it was faster than the Standard Firefly Algorithm. 
In terms of exploitation, the MFFA has the advanatge of tracking its best and not leaving it 
unless a better solution is found. Unlike the MFFA, the performance of the other two versions 
usually fluctuates with the iterations; hence, the MFFA outperformed the other two.

CONCLUSION

This paper discusses the recent versions of Firefly Algorithms, the Chaotic Firefly Algorithm 
and the Modified Firefly Algorithm, along with the Standard Firefly Algorithm. The Firefly 
Algorithm is a metaheuristic optimisation algorithm in which randomly generated feasible 
solutions are assigned as fireflies with a light intensity based on the objective function. A firefly 
tends to follow brighter fireflies and where no brighter firefly exists, if it is the brightest one, it 
will move randomly. This random movement is modified in the Modified Firefly Algorithm so 
that the performance of the algorithm will not fluctuate through iterations and it keeps the best 
solution throughout the iteration, only replacing it if a better solution is found. On the other 
hand, by incorporating chaos in determining the values of the algorithm parameter rather than 
taking it as a constant number, is how the Chaos Firefly operates. Incorporating chaos helps in 
the fast convergence of the algorithm. In this study, these three versions of Firefly Algorithms 
were studied and compared based on eight selected test problems of different types. The 
simulation results for the Standard Firefly Algorithm, the Modified Firefly Algorithm and the 
Chaos Firefly Algorithm, using the three types of chaos models, suggested that the Modified 
Firefly Algorithm outperformed the other versions in average performance and also had a 
smaller standard deviation. Hence, based on the selected test problems, the MFFA was seen 
to be the most accurate and effective algorithm compared to the Chaos and Standard Firefly 
Algorithm while at least one mapping of the Chaotic Firefly Algorithm performed better than 
the Standard Firefly Algorithm.    
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